Anderson, N. H., & Shanteau, J. C. (1970). Information integration in risky decision-  making. Journal of Experimental Psychology, 84(3), 441-451. doi: 10.1037/h0029300

Ashton, R. H. (1974). An Experimental Study of Internal Control Judgements. Journal of Accounting Research, 12(1), 143. doi: 10.2307/2490532

Ashton, A. H. (1985). Aggregating Subjective Forecasts: Some Empirical Results. Management Science, 31(12), 1499-1508. Retrieved March 12, 2015, from route:9b90bee181c954b5b559ad80875f67de

Beach, L. R., & Peterson, C. R. (1966). Subjective probabilities for unions of events. Psychonomic Science, 5(8), 307-308. doi: 10.3758/BF03328412

Bolger, F., & Önkal-Atay, D. (2004). The effects of feedback on judgmental interval predictions. International Journal of Forecasting, 20(1), 29-39. doi: 10.1016/S0169- 2070(03)00009-8

Budescu, D. V., Broomell, S., & Por, H. (2009). Improving Communication of Uncertainty in the Reports of the Intergovernmental Panel on Climate Change. Psychological Science, 20(3), 299-308. doi:10.1111/j.1467-9280.2009.02284.x

Christensen-Szalanski, J. J., Diehr, P. H., Bushyhead, J. B., & Wood, R. W. (1982). Two studies of good clinical judgment. Medical Decision Making, 2(275). doi: 10.1177/0272989X8200200303

Clemen, R. T., & Winkler, R. L. (1999). Combining Probability Distributions From Experts in Risk Analysis. Risk Analysis, 19(2), 187-203. doi: 10.1111/j.1539-6924.1999.tb00399.x

Cox, L.A. (2008), What’s Wrong with Risk Matrices?. Risk Analysis, 28: 497–512. doi:10.1111/j.1539-6924.2008.01030.x

Fleishman, E., MacNally, R., Fay, J. P., & Murphy, D. D. (2001). Modelling and predicting species occurrence using broad-scale environmental variables: An example with butterflies of the great basin. Conservation Biology, 15, 1674-1685.

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684-704. doi:10.1037//0033- 295X.102.4.684

Harvey, N., & Fischer, I. (1997). Taking Advice: Accepting Help, Improving Judgment, and Sharing Responsibility. Organizational Behavior and Human Decision Processes, 70(2), 117-133. doi:10.1006/obhd.1997.2697

Heuer, R. J., Jr. (2005). Limits of Intelligence Analysis. Orbis, 49(1), 75-94. doi:10.1016/j.orbis.2004.10.007

Hogarth, R. M. (1978). A note on aggregating opinions. Organizational Behavior and Human Performance, 21(1), 40-46. doi:10.1016/0030-5073(78)90037-5

Hubbard, D. W. (2009). The failure of risk management: Why it’s broken and how to fix it. Hoboken, NJ: Wiley.

Hubbard, D., & Evans, D. (2010). Problems with scoring methods and ordinal scales in risk assessment. IBM Journal of Research and Development, 54(3), 2:1-2:10. doi:10.1147/JRD.2010.2042914

Jørgensen, M., Teigen, K. H., & Moløkken, K. (2004). Better sure than safe? Over-confidence in judgement based software development effort prediction intervals. Journal of Systems and Software, 70(1-2), 79-93. doi: 10.1016/S0164-1212(02)00160-7

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.

Kouns, J., & Minoli, D. (2010). Information technology risk management in enterprise environments: A review of industry practices and a practical guide to risk management teams. Hoboken, NJ: Wiley.

Kuhnert, P. M., Martin, T. G., & Griffiths, S. P. (2010). A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecology Letters, 13(7), 900-914. doi:10.1111/j.1461-0248.2010.01477.x

Lele, S. R., & Allen, K. L. (2006). On using expert opinion in ecological analyses: A frequentist approach. Environmetrics, 17(7), 683-704. doi:10.1002/env.786

Lichtenstein, S., & Feeney, G. J. (1968). The importance of the data-generating model in probability estimation. Organizational Behavior and Human Performance, 3(1), 62-67. doi: 10.1016/0030-5073(68)90027-5

Lichtenstein, S., & Fischhoff, B. (1980). Training for calibration. Organizational Behavior and Human Performance, 26(2), 149-171. doi: 10.1016/0030-5073(80)90052-5

Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1976). Calibration of Probabilities: The State of the Art. Ft. Belvoir: Defense Technical Information Center.

Lim, J. S., & O’Connor, M. (1995). Judgmental adjustment of initial forecasts: Its effectiveness and biases. Journal of Behavioral Decison Making. Journal of Behavioral Decision Making, 8, 149-168.

Lopes, L. L. (1976). Model-based decision and inference in stud poker. Journal of Experimental Psychology: General,105(3), 217-239. doi: 10.1037//0096-3445.105.3.217

Lopes, L. L. (1991). The Rhetoric of Irrationality. Theory & Psychology, 1(1), 65-82. doi: 10.1177/0959354391011005

Martin, T. G., Burgman, M. A., Fidler, F., Kuhnert, P. M., Low-Choy, S., Mcbride, M., & Mengersen, K. (2012). Eliciting Expert Knowledge in Conservation

Science. Conservation Biology, 26(1), 29-38. doi: 10.1111/j.1523-1739.2011.01806.x Mcbride, M. F., Fidler, F., & Burgman, M. A. (2012). Evaluating the accuracy and calibration of expert predictions under uncertainty: Predicting the outcomes of ecological research. Diversity and Distributions, 18(8), 782-794. doi: 10.1111/j.1472- 4642.2012.00884.x

Merkle, E. C. (2008). O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garthwaite, P.H., Jenkinson, D.J., Oakley, J.E., & Rakow, T. (2006). Uncertain judgements: Eliciting experts’ probabilities. Hoboken, NJ: Wiley. xiii 321 pp. 2. Psychometrika, 73(1), 163-

  1. doi: 10.1007/s11336-007-9036-x

Metropolis, N., & Ulam, S. (1949). The Monte Carlo Method. Journal of the American Statistical Association, 44(247), 335. doi: 10.2307/2280232

Neimark, E. D., & Shuford, E. H. (1959). Comparison of predictions and estimates in a probability learning situation.Journal of Experimental Psychology, 57(5), 294-298. doi: 10.1037/h0043064

Önkal, D., & Muradoglu, G. (1996). Effects of task format on probabilistic forecasting of stock prices. International Journal of Forecasting, 12(1), 9-24. doi: 10.1016/0169- 2070(95)00633-8

Önkal, D., Yates, J., Simga-Mugan, C., & Öztin, Ş. (2003). Professional vs. amateur accuracy: The case of foreign exchange rates. Organizational Behavior and Human Decision Processes, 91(2), 169-185. doi: 10.1016/S0749-5978(03)00058-X

Oskamp, S. (1965). Overconfidence in case-study judgments. Journal of Consulting Psychology, 29(3), 261-265. doi: 10.1037/h0022125

Panko, R. R., & Sprague, R. H. (1998). Hitting the wall: Errors in developing and code inspecting a `simple’ spreadsheet model. Decision Support Systems, 22(4), 337-353. doi: 10.1016/S0167-9236(97)00038-9

Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

Shanteau, J. (1974). Component processes in risky decision making. Journal of Experimental Psychology, 103(4), 680-691. doi: 10.1037/h0037157

Sniezek, J. A., & Buckley, T. (1995). Cueing and Cognitive Conflict in Judge-Advisor Decision Making. Organizational Behavior and Human Decision Processes, 62(2), 159-174. doi:10.1006/obhd.1995.1040

Soll, J. B., & Klayman, J. (2004). Overconfidence in Interval Estimates. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 299-314. doi: 10.1037/0278- 7393.30.2.299

Sorkin, R. D., Hays, C. J., & West, R. (2001). Signal-detection analysis of group decision making. Psychological Review, 108(1), 183-203. doi:10.1037//0033-295X.108.1.183

Speirs-Bridge, A., Fidler, F., Mcbride, M., Flander, L., Cumming, G., & Burgman, M. (2010). Reducing Overconfidence in the Interval Judgments of Experts. Risk Analysis, 30(3), 512-523. doi: 10.1111/j.1539-6924.2009.01337.x

Teo, T. S., & Tan, M. (1997). Quantitative and qualitative errors in spreadsheet development. System Sciences, 1997, Proceedings of the Thirtieth Hawaii International Conference on, 3, 149-155. doi: 10.1109/HICSS.1997.661583

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. doi: 10.1126/science.185.4157.1124

Tversky, A. (1967). Utility Theory And Additivity Analysis Of Risky Choices. Journal of Experimental Psychology,75(1), 27-36. doi: 10.1037/h0024915

Winkler, R. L. (1993). Evaluating and Combining Physicians’ Probabilities of Survival in an Intensive Care Unit. Management Science, 39(12), 1526-1543. Retrieved March 12, 2015, from route:22d3ded23b30e0a19c2d79f47a4c102b

Yang, R., & Berger, J. (1997). A catalogue of noninformative priors. Institute of Statistics and Decision Science, 97-42.

Yaniv, I. (1997). Heuristics for Aggregating Judgments under Uncertainty. Organizational Behavior and Human Decision Processes, 69(3), 237-249. doi:10.1006/obhd.1997.2685

Yaniv, I. (2004). Receiving other people’s advice: Influence and benefit. Organizational Behavior and Human Decision Processes, 93(1), 1-13. doi:10.1016/j.obhdp.2003.08.002

Yaniv, I., & Hogarth, R. M. (1993). Judgmental versus Statistical Prediction: Information Asymmetry and Combination Rules. Psychological Science, 4(1), 58-62. Retrieved from route:253c4f6c8878b90250b4a2f5edf9cc5b

Zarnowitz, V. (1984). The accuracy of individual and group forecasts from business outlook surveys. Journal of Forecasting, 3(1), 11-26. doi:10.1002/for.3980030103